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Optimization for subway stations

Paris subway system energy consumption =
1/3 stations + 2/3 trains

Subway stations have recoverable energy ressources

We use optimization to harvest unexploited energy
ressources and manage the energy efficiency investments
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Subway stations energy mix
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Subway stations typical energy consumption
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Subway stations have unexploited energy ressources
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Energy recovery requires a buffer
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Subways braking energy is unpredictible

Multiple braking energy realizations
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Energy management system
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Microgrid concept for subway stations
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Previous results of stations energy management

We control ventilations and a battery

Time horizon: 24h

Time discretization: 20 seconds

Battery capacity: 80kWh

Uncertainty: 100 braking energy scenarios, deterministic demand

Comparison of 2 algorithms:

MPC SDP
Offline comp. time 0 1h
Online comp. time [10s,200s] [0s,1s]
Av. economic savings -27.3% -30.7%
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Air quality comparaison
Reference case:

Optimized with SDP:
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We are focusing on the battery
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Batteries intraday control
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Electrical network representation
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Intraday control problem

For a given battery we want a control maximizing the expected savings:

max
U·

E
[ T∑
t=0

cet

(
U
−
t − E l

t

)
︸ ︷︷ ︸
saved energy

]

s.t St+1 = St −
1

ρd
U
−
t + ρcsat(U+

t ∨Wt)

}
SOC dynamic

αmC ≤ St ≤ αMC } SOC bounds

U
+
t −Wt ≤ E l

t

}
Supply/demand balance

0 ≤ Dt −U−t
}

No selling constraint

0 ≤ E l
t

}
No selling constraint

S0 = s0 } Initial SOC
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Investment management
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Batteries investments valuation difficulties

Control strategy: Daily savings and batteries aging depend on the
way we control them

Market uncertainties: Batteries and electricity costs are uncertain

Investment management uncertainties: We can postpone our first
investment, replace our batteries or abandon the project in reaction to
market observation

External impacts: Environmental incentives are not direct financial
benefits

Stations Optimal Management November 30, 2016 13 / 31



We maximize a finite horizon discounted expected cost

max
U·,R·

E
[ Ttot∑
t=0

γt︸︷︷︸
Discount rate

(
cet

(
U
−
t − E l

t︸ ︷︷ ︸
Saved energy

)
− C

b
t Rt︸ ︷︷ ︸

Battery purchase cost

)]

Ttot = N × T

Using our energy savings to cover our investments
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Controlling the batterie state of charge St

St+1 = χRt

(
St︸︷︷︸
SOC

− 1

ρd
U
−
t︸︷︷︸

Discharge

+ρc sat(U+
t ∨Wt)︸ ︷︷ ︸

Charge

)
+ S ini

t (Rt)︸ ︷︷ ︸
SOC0 at replacement

χRt = 1Rt=0
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The batterie state of healthHt

Ht+1 = χRt

(
Ht︸︷︷︸
SOH

−U−t − sat(U+
t ∨Wt)︸ ︷︷ ︸

Exchanged energy

)
+ H ini

t (Rt)︸ ︷︷ ︸
SOH0 at replacement
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The batterie capacity Ct renewal/purchase

Ct+1 = χRt Ct︸︷︷︸
Current battery capacity

+ Rt︸︷︷︸
New battery purcharse
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Ensuring some states/control constraints

αmCt ≤ St ≤ αMCt , 0 ≤ Ht︸ ︷︷ ︸
SOC and health bounds

U
+
t −Wt ≤ E l

t , 0 ≤ E l
t , 0 ≤ Dt −U−t︸ ︷︷ ︸

Supply/Demand balance

S0 = s0, C0 = c0, H0 = h0︸ ︷︷ ︸
Intial state
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And the non-anticipativity constraint

σ(Ut), σ(Rt) ⊂ σ(W0,C
b
0 , ...,Wt−1,C

b
t−1)
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Investment/control problem

max
U·,R·

E
[ Ttot∑
t=0

γt

(
cet

(
U
−
t − E l

t

)
− Cb

t Rt

)]
s.t St+1 = χRt

(
St −

1

ρd
U
−
t + ρcsat(U+

t ∨Wt)
)

+ S ini
t (Rt)

Ht+1 = χRt

(
Ht −U−t − sat(U+

t ∨Wt)
)

+ H ini
t (Rt)

Ct+1 = χRtCt + Rt

αmCt ≤ St ≤ αMCt , 0 ≤ Ht

U
+
t −Wt ≤ E l

t , 0 ≤ E l
t , 0 ≤ Dt −U−t

S0 = s0, C0 = c0, H0 = h0

σ(Ut), σ(Rt) ⊂ σ(W0,C
b
0 , ...,Wt−1,C

b
t−1)
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Model assumptions

Daily electricity contract: cet is T -periodic

No intraday battery renewal: ∀t 6= kT , Rt = 0

Braking energy probability law is T-periodic:

Let ξWk =
(
Wt

)
t=tk ..tk+T−1

then (ξWk )k∈0,..,N are i.i.d.

Cost of batteries is constant intraday:
∀k ,∀t ∈ {kT , .., (k + 1)T − 1}, Cb

t = Cb
kT

We note k-th day first time step: tk = kT
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Investment/Control
decomposition
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Two decision time scales
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1 min

?
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How to decompose the investment problem into:

an intraday control problem
and

a daily investment problem?
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Resolution method: Bilevel
Stochastic Dynamic

Programming
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Intraday control problem parametrized value function

∀k ∈ {0, ..,N} we define:

Qµ
0 (s0, c0, h0; Sd ,Hd) =

max
U·

E
[ tk+1−1∑
t=tk+1

cet

(
U
−
t − E l

t

)]
s.t St+1 = St −

1

ρd
U
−
t + ρcsat(U+

t ∨Wt)

Ht+1 = Ht −U−t − sat(U+
t ∨Wt)

U
+
t −Wt ≤ E l

t , 0 ≤ E l
t , 0 ≤ Dt −U−t

αmc0 ≤ St ≤ αMc0

Hd ≤ Htk+1
, Sd ≤ Stk+1

Stk+1 = s0, Htk+1 = h0

σ(Ut) ⊂ σ(Wtk+1, ...,Wtk+1−1)
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Investment/Control decomposition

As suggested by Heymann et al. [2] we can extend their lemma to the
stochastic case:

Vtk (stk , ctk , htk ) = max
U·,R·

E
[Ttot∑
t=tk

γt

(
cet

(
U
−
t − E l

t

)
− Cb

t Rt

)]
= max
Utk

,Rtk
; SF ,HF

E
[
γtk c

e
tk

(U−tk − E
l
tk

)︸ ︷︷ ︸
elec savings

− γtkC
b
tk
Rtk︸ ︷︷ ︸

battery renewal

+ γtkQ
µ
0 (Stk+1,Ctk+1,Htk+1; SF ,HF )︸ ︷︷ ︸

intraday value

+ Vtk+1
(SF ,Ctk+1,HF )︸ ︷︷ ︸

future investment cost

]
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Remarks

We need to assume time independence of the Cb
t

We need monotonicity assumptions:
I Full battery is always preferable: s 7→ Vtk (s, ., .) is non-increasing

I Healthy battery is always preferable: h 7→ Vtk (., ., h) is non-increasing

SF and HF are mappings: σ(SF ), σ(HF ) ⊂ σ(Cb
tk
, ξWk )
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Preliminary numerical results
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Synthetic data
Maximum exangeable energy: model proposed in Haessig et al. [1]
Eexch = 2Erated ∗ Ncycles

Discount rate: 4.5%
Batteries cost stochastic model: synthetic scenarios that
approximately cöıncides with market forecasts
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Comparison

We compare 3 investement strategies over 20 years, 100 Cb scenarios, 1
single capacity (80 kWh)

Straightforward approach, investment/control independence:

Strategy 1: Buy now, replace when battery is dead, ignore aging

Bilevel Stochastic Dynamic Programming:

Strategy 2: Buy now, replace when battery is dead, control aging

Strategy 3: Start investment and buy batteries anytime, control aging
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Preliminary results

Cost 1 = -7000 euros ⇒ do not invest!

Cost 2 = +12000 euros ⇒ do not strain your first batteries!

Cost 3 = +33000 euros ⇒ start investment in 2020 and do not strain
your first batteries!

SDP BSDP
Offline comp. time ∞ (out of memory) 16min
Online comp. time ? [0s,1s]
Simulation comp. time ? [20s,30s]
Lower bound ? +38k

In Julia with a Core I7, 2.6 Ghz, 8Go ram + 12Go swap SSD
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Conclusion

Our study leads to the following conclusions:

Controlling aging matters

BSDP provides encouraging results

BSDP can be used for aging aware intraday control
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Ongoing work

We are now focusing on:

Confirming, developing and improving BSDP results

Improving risk modelling

Improving batteries cost stochastic model

Improving aging model

Include environmental incentives (particulate matters)

Apply the method to more complex energy efficiency investments
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