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Microgrid & stochastic optimization at Efficacity
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Publications: from small problems to large problems

Stochastic optimal control of a domestic microgrid equipped
with solar panel and battery. Pacaud, F., Carpentier, P.,
Chancelier, J.P., De Lara, M.

Stochastic Optimization of Braking Energy Storage and
Ventilation in a Subway Station, T. Rigaut, P. Carpentier, J-Ph.
Chancelier, M. De Lara, J. Waeytens.

Stochastic decomposition applied to large-scale hydro valleys
management., Pacaud, F., Carpentier, P., Chancelier, J.P. and
Leclere, V.

Algorithms for two-time scales stochastic optimization with
applications to long term management of energy storage,
Rigaut, T., Carpentier, P., Chancelier, J.P. and De Lara, M.
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Energy system : a house with solar panels

All the equipment exchange electricity though a DC grid.

EE
d ,m+1 + ES

d ,m+1 = EB
d ,m + EL

d ,m+1

DC microgrid to be managed

DC : Very small storage on a
really fast time scale

EL: Electrical load, or demand,
that is uncertain

ES : Solar panels, uncertain
renewable electricity

EE : Connection to the national
grid (recourse)

EB : Electrical storage
(charge/discharge)
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A Two time scales decision process

M ∈ N∗ the number of minutes in a day,

D ∈ N∗, the number of days taken into account.

Decisions:
I Battery charge/discharge every minutes m ∈ {0, . . . ,M} of every

day d ∈ {0, . . . ,D},
I Renewal of the battery or not every day d ∈ {0, . . . ,D + 1}.

Notations:
I Two time indexes zd,m: z changes every minutes m of everyday d
I Single index zd : z changes only every day
I (d ,m) ∈ T with

T = {0, . . . ,D} × {0, . . . ,M} ∪ {(D + 1, 0)} ,

equipped with the lexicographical order

(d ,m) < (d ′,m′) ⇐⇒ (d < d ′) ∨
(
d = d ′ ∧m < m′

)
.
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Two time scales

Long term economic profitability

Horizon: 10 years (d: step is 1 day)

Storage aging target every day

2∆T∆T0 . . . D∆T
24h24h

∆T∆T

2∆T

M − 1
. . .

2∆t∆t

∆T
1 min 1 min1 min

∆t ∆t∆t

Long term aging and renewal

Intraday arbitrage

Energy intraday arbitrage

Horizon: 24h (m: step is 1 min)

charge/discharge
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Uncertainties

Fast scale:
I ES

d,m: the solar production in kWh,
I EL

d,m: the electrical demand (load) in kWh.

Slow scale:
I Pb

d : the price of a battery replacement in $/kWh.

Gather uncertainties as the sequence
{
W d ,m

}
(d ,m)∈T

:

W d ,m =

(
ES

d ,m

EL
d ,m

)
and W d ,M =

ES
d ,M

EL
d ,M

Pb
d


Information at time (d ,m): past observations of noises

Fd ,m = σ
(
W d ′,m′ ; (d ′,m′) ≤ (d ,m)

)
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Non anticipative decisions

Physical decision variables
I Fast scale:

F EE
d,m: the national grid consumption in kWh;

F EB
d,m: the battery charge (≥ 0) or discharge (≤ 0) in kWh.

I Slow scale:
F Rd : the size of the new battery in kWh.

Mathematical decision variables
I EE

d,m is supposed to be imposed by non modelized dynamics:

EE
d,m+1 = EB

d,m + EL
d,m+1 − ES

d,m+1

I Controls are grouped as:

Ud,m =
(
EB

d,m

)
and Ud,M =

(
Rd

)
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Charge/discharge impacts battery state of charge and age

Fast state dynamics
I C d : capacity of the battery
I Bd,m: state of charge of the battery

Bd,m+1 = Bd,m −
1

ρd
EB−

d,m +
1

ρd
ρcEB+

d,m

s.t. B × C d× ≤ Bd,m ≤ B × C d

I Hd,m: remaining amount of exchangeable energy (health measure)

Hd,m+1 = Hd,m −
1

ρd
EB−

d,m − ρcE
B+
d,m

s.t. 0 ≤ Hd,m

(max number of cycles gives initial value as) 2× Nc(C d)× C d
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Battery renewal impacts state dynamics
Physical fast state dynamics

I Capacity

C d+1 =

{
Rd , if Rd > 0 ,

C d , otherwise .

I Charge: new battery is assumed empty

Bd+1,0 =

{
B × Rd , if Rd > 0 ,

Bd,M , otherwise ,

I Exchangeable energy (new battery has a renewed health)

Hd+1,0 =

{
2× Nc(Rd)× Rd , if Rd > 0 ,

Hd,M , otherwise .

Mathematical daily state dynamics X d :

X d =

 Cd

Bd ,0

Hd ,0

 and X d+1 = fd
(
X d ,Ud ,0:M

)
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Stochastic optimization problem
Objective to be minimized: discounted sum of expenses, that is battery
renewals cost and national grid energy consumption cost

E
[ D∑
d=0

γd

(
Pb

d × Rd︸ ︷︷ ︸
battery renewal

+
M−1∑
m=0

ped ,m︸︷︷︸
price

×
(

EB
d ,m + EL

d ,m+1 − ES
d ,m+1︸ ︷︷ ︸

EE
d,m+1(nat. grid energy consumption)

))]

Gathering all the above equations, we obtain:

V (x) = min
X

0:D+1
, U

0:D

E
[ D∑
d=0

Ld(X d ,Ud ,W d) + K (XD+1)
]
,

s.t X d+1 = fd(X d ,Ud ,W d) ,

Ud = (Ud ,0, . . . ,Ud ,m, . . . ,Ud ,M) ,

W d = (W d ,0, . . . ,W d ,m, . . . ,W d ,M) ,

σ(Ud ,m) ⊂ σ
(
W d ′,m′ ; (d ′,m′) ≤ (d ,m)

)
X 0 = x ,
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Time blocks dynamic programming

Independance Assumption

The sequence {W d}d=0,...,D is a sequence of independent random

variables (W d = (W d ,0, . . . ,W d ,M))

Sequence of daily value functions, defined by backward induction as
follows. At time D + 1, we set VD+1 = K and then

Vd(x) = min
X
d+1

,U
d

E
[
Ld(x ,Ud ,W d) + Vd+1(X d+1)

]
s.t X d+1 = fd(x ,Ud ,W d)

σ(Ud ,m) ⊂ σ(W d ,0:m)

Proposition [?]

Under Independance Assumption V0 = V

Two time scales SDP November, 2018 12 / 26
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Time blocks decomposition

The target intraday problem (min min problem)

P(d ,=)

[
xd ,X d+1

]


min
U
d

E
[
Ld(x ,Ud ,W d)

]
s.t fd(x ,Ud ,W d) = X d+1

σ(Ud ,m) ⊂ σ(W d ,0:m)

Proposition

Under Independence Assumption, Vd satisfy: VD+1 = K

Vd(x) = min
X∈L0(Ω,F ,P;Xd+1)

(
φ(d ,=)

(
x ,X

)
+ E

[
Vd+1(X )

])
,

s.t σ(X ) ⊂ σ(W d) .

where φ(d ,=)

(
xd ,X d+1

)
is the value of P(d ,=)

[
xd ,X d+1

]
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Relaxed Time blocks decomposition

A relaxed target intraday problem (min min problem)

P(d ,≥)

[
xd ,X d+1

]


min
U
d

E
[
Ld(xd ,Ud ,W d)

]
s.t fd(xd ,Ud ,W d) ≥ X d+1

σ(Ud ,m) ⊂ σ(W d ,0:m)

A relaxed Bellman value function V(d ,≥)

V(d ,≥) satisfy: V(D+1) = K

V(d ,≥)(x) = min
X∈L0(Ω,F ,P;Xd+1)

(
φ(d ,≥)

(
x ,X

)
+ E

[
V(d+1,≥)(X )

])
,

s.t σ(X ) ⊂ σ(W d) .

where φ(d ,≥)

(
xd ,X d+1

)
is the value of P(d ,≥)

[
xd ,X d+1

]
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Relaxed Time blocks decomposition

Assumption

The final cost K is a non increasing mapping and that for
all d ∈ {0, . . . ,D}, the dynamics fd are non decreasing over their first
argument and that the instantaneous costs Ld are non increasing over
their first argument.

Proposition

V(d ,≥) ≤ Vd and under above Assumption Vd = V(d ,≥) ≤ V(d ,≥,Xd+1)

V(d ,≥,Xd+1)(x) = min
X∈Xd+1

(
φ(d ,≥)

(
x ,X

)
+ V(d+1,≥,Xd+1)(X )

)
Main numerical efforts compute φ(d ,≥)

(
·, ·
)

May depend on x − x ′, (φ(d ,≥)

(
x − x ′

)
). Subset of days.

SP methods, Progressive hedging methods
Parallelism (on variable d , on states (x , x ′))
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Adaptative weight algorithm

Dualized intraday problems ψd , (xd ,λd+1) ∈ Xd × L0(Ω,F ,P; Λd+1)

ψd(xd ,λd+1) = min
U
d

E
[
Ld(xd ,Ud ,W d) + 〈λd+1, fd(xd ,Ud ,W d)〉

]
s.t σ(Ud ,m) ⊂ σ(W d ,0:m)

Adaptative daily value function V d

V d satisfy: VD+ = K

V d(xd) = sup
λ
d+1
∈Λd+1

ψd(xd ,Λd+1)− V ∗d+1(λd+1) ,

s.t σ(λd+1) ⊂ σ(X d+1) ,

where V ∗d+1 is the Fenchel transform of the function V d+1.

Two time scales SDP November, 2018 16 / 26
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Adaptative weight algorithm

Lemma

V d ≤ Vd . Assume that K is convex non increasing and that the
dynamics fd are non decreasing over their first argument and linear and
that the instantaneous costs Ld are non increasing over their first
argument and convex. If

moreover ri
(
dom(ψd(xd , ·))− dom(EVd+1(·))

)
6= ∅. Then, the value

functions Vd are non increasing and we have the equality Vd = V d

Computationally costly to compute the function ψd for every
d ∈ {0, . . . ,D}, initial state xd ∈ Xd and particularly stochastic
weights λ ∈ L0(Ω,F ,P; Λd+1).

(Heuristic) Restrict the computation to deterministic weights in Λd+1.
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A house with solar panels and a battery

Solar radiation measurements from Zambia1 converted into solar
panels (12kWc) production with PVLIB2

Load data from a customer in Australia3

We want to minimize the electricity bill of the house!

1energydata.info/en/dataset/zambia-solar-radiation-measurement-data-2015-2017
2github.com/pvlib/pvlib-python
3www.ausgrid.com.au/datatoshare
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Application 1: comparison on a simple aging problem

Instance :

5 days, 7200 minutes

13 kWh battery, 100 kWh of exchangeable energy

No battery renewal!

We control state of charge and aging every minutes

Algorithms :

Straightforward stochastic dynamic programming

Daily time blocks decomposition with targets

Daily time decomposition with weigths

Straightforward stochastic dual dynamic programming
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In-sample assessment
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Computation times and convergence

SDP Targets Weights SDDP
Intraday (SDDP) n.a 14 sec 51× 14 sec n.a
Daily values n.a 0.10 sec 0.15 sec n.a
Minute values 22.5 min 5× 14 sec 5× 4.5 min 3.6 min
Convergence 0.91 % 0.31 % 0.32 % 0.90 %
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Simulations and value functions comparison
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Application 2: A case with renewal

Instance :

20 years, 10512000 minutes

Battery capacity between 0 and 20 kWh

Initial health : 2× Ncycles × capacity

Renewal possible everyday

We control state of charge and aging every minutes

Yearly discount rate : 0.96
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Synthetic price of batteries

Batteries cost stochastic model: synthetic scenarios that
approximately coincide with market forecasts4

4Bloomberg forecasts: data.bloomberglp.com/bnef/sites/14/2017/07/BNEF-
Lithium-ion-battery-costs-and-market.pdf
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1 simulation over 20 years: it pays to control aging!

Reference: optimal battery and aging control

No aging control: +8% of expenses over 20 years,

No battery: +10% of expenses over 20 years.
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Application 3: Optimal sizing of a battery
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