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Optimization for subway stations

Paris urban railway transport system energy consumption =
% subway stations + % traction system

Subway stations present a significantly high particulate
matters concentration

We use optimization to harvest unexploited energy

ressources and improve air quality.
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Subway stations typical energy consumption
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Subway stations have unexploited energy ressources
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Energy recovery requires a buffer
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Air quality
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Subways arrivals generate particulate matters
Rails/brakes wear and resuspension increase PM10 concentration

Train braking

Mechanical
Braking

2 mg of PM10 generated

Train braking

Regenerative
braking

Mechanical
Braking

Recovering energy improves air quality

1.5 mg of PM10 generated
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Energy/Air management
system
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Subway station microgrid concept
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Objective: We want to minimize energy consumption and
particles concentration

A parameter A\ measures the relative weights of the 2 objectives:

Supply E3uPPly
Z Cost; ( EStatlon t Battery t) +A C

Grid supply PMlO

(M)
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We control the battery
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Let

have many uncertainties

W; the random variables vector of uncertainties at time t:

Qutdoor particles concentration : C,Q“t

Available
Train t

. H . Demand
Station consumption : EgS7ene,

Cost of electricity : Cost;

t
Regenerative braking : E

Particles generation : Qp;
Resuspension rate : p~,

Deposition rate : p”,
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We set a stochastic optimal control problem

minE(Z Cost,(ES™PPY 4 ESUPlY ) 4 \cln ) }Objective

Ueu Stationt Battery ¢
s.t
Soc; 1 = Soc; — —UBf + pe(UBH + E-f-gr,ﬁlus } Battery dynamics
Pdc
) dVentl/ N
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Summary of the equations

Soc;
State of the system: X; = cp,
CFI;'Ioort
B—
Ut
Controls: U; = UF+ ,
dVentil
t

And the dynamics:

Xt+1 = ft(xt, U, Wt+1)
We add the non-anticipativity constraints:

Ut j O'(Wl, ceey Wt)

ef'ﬁcacity®

Stations Optimal Management June 21, 2016 13 / 26



Compact stochastic optimal control problem

We obtained a stochastic optimization problem consistent with the general
form of a time additive cost stochastic optimal control problem:

T-1
min E (; Le(Xe, Ur, Wey1) + K(XT)>
S.t. Xt+1 = ft(Xt, Ut, Wt+1)

Ut j J(X07 W17 ceey Wt)
U: € U;
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Outline

© Two methods to solve the problem
@ We are looking for a policy
@ Dynamic programming in the non Markovian case
o Model Predictive Control
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We are looking for a policy
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What is a solution?
In the general case an optimal solution is a function of past uncertainties:

Ut j O'(X(), W1, ceey Wt) = Ut = 7'('1-(X()7 Wl, ceey Wt)
This is an history-dependent policy

In the Markovian case (noises time independence) it is enough to restrict
the search to state feedbacks:

Ut = 7Tt(Xt)

In the Markovian case we can introduce value functions:

T-1
Vx € Xy, Vi(x) = mTinE( 3" Lo(Xer, me(Xer), Wara) + K(XT))
t'=t
s.t X = x and dynamics

. efficacit
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Dynamic programming in
the non Markovian case
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Dynamic programming in the general case

Bellman equation does not hold in the non Markovian case.
Let I be the probability s.t (W¢)ec[1, 7] are time independent but keep the
same marginal laws.

Algorithm

Offline: We produce value functions with Bellman equation using this
probability measure:

Ve(x) = min Ep, (Lt(X, u, Wegr) + Ve (fe(x, u, Wt+1))>
Online: We plug the computed value functions as future costs at time t:

us € arg%ﬂn Efp (Lt(xt, u, Weiq) + \~/t+1(ft(xt, u, Wt+1)))
uelUs t

4
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We produce history-dependent controls

With B, the probability updating W,_; marginal law taking into account
all the past informations: Vi <t, W; = w;.

If the (W;)ic1. 741 are independent the controls are optimal and P, = P,

Stochastic Dynamic Programming suffers the well known "curse of
dimensionality".
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Model Predictive Control
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Rollout algorithms

To avoid value functions computation we can plug a lookahead future cost
for a given policy:

ur € arg %win Et(Lt(Xt, u, Wei1) + J5 (e, u, Wt+1))>
uelUs

It gives the cost of controlling the system in the future according to the
given policy:

T-1

VX € Koty ST () =Ee( Y Lo(Xe, mo(Xe), We 1) + K(X7))
t/=t+1

st Xiy1 = x, and the dynamics
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Model Predictive Control

Choosing 7t in the class of open loop policies minimizing the expected
future cost:

Vi>t+1, Ju; € R", Vx, 7f(x) = u;

T-1
uy € argmin min }Et<Lt(xt, u, Wepp) + Z Lo (Xyr, uyr, Wt/+1))

welU;  (Uey1,..ur_1) Yl

With E; replacing noises by forecasts, we obtain a deterministic problem.
Algorithm

Online: At every MPC step t, compute a forecast (W¢y1, ..., Wr41) using
the observations Vi < t, W; = w;. Then compute control u;:

T-1

uy € arg min min Lt(Xt, u, V_Vt+1) + E Lt’(Xt’7 ugr, Wt’+1)
veU; (Uerr,..,uT—1) Wl

o

o
MPC is often defined with a rolling horizon. efficacit
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Outline

© Numerical results
@ Random variables modeling
o Methods
@ Results
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Random variables modeling
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Some random variables are taken deterministic

Outdoor particles concentration : C,Q”tt
. . . Available
Regenerative braking : E7/227¢.
. - . D d
Station consumption : EgS7iane.

Cost of electricity : Cost;
Particles generation : Qp,

Resuspension rate : pR,

Deposition rate : p°,
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Stochastic models

We have multiple equiprobable scenarios:

Braking energy and outside PM10 concentration every 5s
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We deduce the discrete marginal laws from these scenarios.
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Details on the methods

Stochastic Dynamic Programming:

We compute value functions every 5s. We can compute a control every 5s.
The algorithm is coded in Julia.

julia

Model Predictive Control:

The deterministic problem is linearized leading to a MILP. It is solved every
15 min with a 2 hours horizon. We use two forecasts strategies:

o MPC1: Expectation of each noise ignoring the noises dependence

o MPC2: Scenarios where the next outside PM10 concentration is not
too far from the previous one
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Results
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Air quality comparaison
Reference case:

Ventilation airflow reference scenario Particles concentration reference scenario
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Optimized with SDP:

Ventilation airflow optimized

Particles concentration optimized
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Battery control over a scenario

Result produced using SDP with a regular day

75

Battery Control optimized
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Energetic results

Assessor: 50 scenarios of 24h with time step = 5 sec
Reference: Energy consumption cost over a day without battery and
ventilation control

MPC1 MPC2 SDP
Offline comp. time 0 0 12h
Online comp. time [10s,200s] [10s,200s] [Os,1s]
Av. economic savings -26.2% -27.4% -30.7%
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Conclusion & Ongoing work

Our study leads to the following conclusions:
o A battery and a proper ventilation control provide significant economic
savings
@ SDP provides slightly better results than MPC but requires more
offline computation time
We are now focusing on:

o Using other methods that handle more state/control variables (SDDP,
RL...)

o Taking into account more uncertainty sources

o Calibrating air quality models for a more realistic concentration
dynamics behavior

Ultimate goal: apply our methods to laboratory and real size

demonstrators
. . ®
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