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Optimization for subway stations

Paris urban railway transport system energy consumption =
1

3
subway stations + 2

3
traction system

Subway stations present a signi�cantly high particulate

matters concentration

We use optimization to harvest unexploited energy

ressources and improve air quality.
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Energy
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Subway stations typical energy consumption
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Subway stations have unexploited energy ressources
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Energy recovery requires a bu�er
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Air quality
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Subways arrivals generate particulate matters
Rails/brakes wear and resuspension increase PM10 concentration

Recovering energy improves air quality
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Energy/Air management
system
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Subway station microgrid concept
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Objective: We want to minimize energy consumption and

particles concentration

A parameter λ measures the relative weights of the 2 objectives:

T∑
t=0

Costt (ESupply
Stationt + E

Supply
Battery t

)︸ ︷︷ ︸
Grid supply

+λ C In
P t︸︷︷︸

PM10
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We control the battery
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We have many uncertainties

Let Wt the random variables vector of uncertainties at time t:

Outdoor particles concentration : COut
P t

Regenerative braking : EAvailable
Train t

Station consumption : EDemand
Station t

Cost of electricity : Costt

Particles generation : QPt

Resuspension rate : ρR
t

Deposition rate : ρD
t
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We set a stochastic optimal control problem

min
U∈U

E
( T∑

t=0

Costt(E
Supply
Stationt + E

Supply
Battery t

) + λC In
P t

) }
Objective

s.t

Soct+1 = Soct −
1

ρdc
UB−

t + ρc(UB+
t + E

Surplus
Train t)

}
Battery dynamics

C In
P t+1

= C In
P t +

dVentil
t

V
(COut

P t − C
In
P t)

+
ρR
t

S
CFloor
P t −

ρD
t

V
C In
P t +

QPt

V

CFloor
P t+1

= CFloor
P t +

ρD
t

S
C In
P t −

ρR
t

V
CFloor
P t


Particles dynamics

UB+
t + E

Surplus
Train t = E

Supply
Battery t

+ ERecovered
Train t

EDemand
Station t = E

Supply
Stationt +UB−

t

}
Supply/demand balance

SocMin ≤ Soct ≤ SocMax

C In
P t ≥ 0

}
Constraints
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Summary of the equations

State of the system: Xt =

 Soct

C In
P t

CFloor
P t



Controls: Ut =

 UB−
t

UB+
t

dVentil
t

 ,

And the dynamics:

Xt+1 = ft(Xt ,Ut ,Wt+1)

We add the non-anticipativity constraints:

Ut � σ(W1, ...,Wt)
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Compact stochastic optimal control problem

We obtained a stochastic optimization problem consistent with the general
form of a time additive cost stochastic optimal control problem:

min
X ,U

E

(
T−1∑
t=0

Lt(Xt ,Ut ,Wt+1) + K (XT )

)

s.t. Xt+1 = ft(Xt ,Ut ,Wt+1)
Ut � σ(X0,W1, ...,Wt)

Ut ∈ Ut
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We are looking for a policy
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What is a solution?
In the general case an optimal solution is a function of past uncertainties:

Ut � σ(X0,W1, ...,Wt)⇒ Ut = πt(X0,W1, ...,Wt)

This is an history-dependent policy

In the Markovian case (noises time independence) it is enough to restrict
the search to state feedbacks:

Ut = πt(Xt)

In the Markovian case we can introduce value functions:

∀x ∈ Xt , Vt(x) =min
π

E
( T−1∑

t′=t

Lt′(Xt′ , πt′(Xt′),Wt′+1) + K (XT )
)

s.t Xt = x and dynamics

and use Bellman equation
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Dynamic programming in
the non Markovian case
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Dynamic programming in the general case

Bellman equation does not hold in the non Markovian case.
Let P̃ be the probability s.t (Wt)t∈[|1,T |] are time independent but keep the
same marginal laws.

Algorithm

O�ine: We produce value functions with Bellman equation using this
probability measure:

Ṽt(x) = min
u∈Ut

EP̃t

(
Lt(x , u,Wt+1) + Ṽt+1(ft(x , u,Wt+1))

)
Online: We plug the computed value functions as future costs at time t:

ut ∈ argmin
u∈Ut

E˜̃Pt

(
Lt(xt , u,Wt+1) + Ṽt+1(ft(xt , u,Wt+1))

)
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We produce history-dependent controls

With ˜̃Pt the probability updating Wt+1 marginal law taking into account
all the past informations: ∀i ≤ t, Wi = wi .

If the (Wt)t∈1..T+1 are independent the controls are optimal and ˜̃Pt = P̃t

Stochastic Dynamic Programming su�ers the well known "curse of
dimensionality".
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Model Predictive Control
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Rollout algorithms

To avoid value functions computation we can plug a lookahead future cost
for a given policy:

ut ∈ argmin
u∈Ut

Et

(
Lt(xt , u,Wt+1) + Jπ

t

t+1(ft(xt , u,Wt+1))
)

It gives the cost of controlling the system in the future according to the
given policy:

∀x ∈ Xt+1, J
πt

t+1(x) =Et

( T−1∑
t′=t+1

Lt′(Xt′ , πt′(Xt′),Wt′+1) + K (XT )
)

s.t Xt+1 = x , and the dynamics
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Model Predictive Control
Choosing πt in the class of open loop policies minimizing the expected
future cost:

∀i ≥ t + 1, ∃ui ∈ Rn, ∀x , πti (x) = ui

ut ∈ argmin
u∈Ut

min
(ut+1,...,uT−1)

Et

(
Lt(xt , u,Wt+1) +

T−1∑
t′=t+1

Lt′(Xt′ , ut′ ,Wt′+1)
)

With Et replacing noises by forecasts, we obtain a deterministic problem.

Algorithm

Online: At every MPC step t, compute a forecast (w̄t+1, ..., w̄T+1) using
the observations ∀i ≤ t, Wi = wi . Then compute control ut :

ut ∈ argmin
u∈Ut

min
(ut+1,...,uT−1)

Lt(xt , u, w̄t+1) +
T−1∑

t′=t+1

Lt′(xt′ , ut′ , w̄t′+1)

MPC is often de�ned with a rolling horizon.
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Random variables modeling
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Some random variables are taken deterministic

Outdoor particles concentration : COut
P t

Regenerative braking : EAvailable
Train t

Station consumption : EDemand
Station t

Cost of electricity : Costt

Particles generation : QPt

Resuspension rate : ρR
t

Deposition rate : ρD
t
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Stochastic models

We have multiple equiprobable scenarios:

Braking energy and outside PM10 concentration every 5s

We deduce the discrete marginal laws from these scenarios.
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Details on the methods

Stochastic Dynamic Programming:

We compute value functions every 5s. We can compute a control every 5s.
The algorithm is coded in Julia.

Model Predictive Control:

The deterministic problem is linearized leading to a MILP. It is solved every
15 min with a 2 hours horizon. We use two forecasts strategies:

MPC1: Expectation of each noise ignoring the noises dependence

MPC2: Scenarios where the next outside PM10 concentration is not
too far from the previous one
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Results
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Air quality comparaison
Reference case:

Optimized with SDP:
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Battery control over a scenario

Result produced using SDP with a regular day
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Energetic results

Assessor: 50 scenarios of 24h with time step = 5 sec
Reference: Energy consumption cost over a day without battery and
ventilation control

MPC1 MPC2 SDP

O�ine comp. time 0 0 12h
Online comp. time [10s,200s] [10s,200s] [0s,1s]
Av. economic savings -26.2% -27.4% -30.7%
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Conclusion & Ongoing work

Our study leads to the following conclusions:

A battery and a proper ventilation control provide signi�cant economic
savings

SDP provides slightly better results than MPC but requires more
o�ine computation time

We are now focusing on:

Using other methods that handle more state/control variables (SDDP,
RL...)

Taking into account more uncertainty sources

Calibrating air quality models for a more realistic concentration
dynamics behavior

Ultimate goal: apply our methods to laboratory and real size

demonstrators
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